Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
medRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562841

RESUMEN

Genome-wide association studies (GWASs) may help inform treatments for infertility, whose causes remain unknown in many cases. Here we present GWAS meta-analyses across six cohorts for male and female infertility in up to 41,200 cases and 687,005 controls. We identified 21 genetic risk loci for infertility (P≤5E-08), of which 12 have not been reported for any reproductive condition. We found positive genetic correlations between endometriosis and all-cause female infertility (rg=0.585, P=8.98E-14), and between polycystic ovary syndrome and anovulatory infertility (rg=0.403, P=2.16E-03). The evolutionary persistence of female infertility-risk alleles in EBAG9 may be explained by recent directional selection. We additionally identified up to 269 genetic loci associated with follicle-stimulating hormone (FSH), luteinising hormone, oestradiol, and testosterone through sex-specific GWAS meta-analyses (N=6,095-246,862). While hormone-associated variants near FSHB and ARL14EP colocalised with signals for anovulatory infertility, we found no rg between female infertility and reproductive hormones (P>0.05). Exome sequencing analyses in the UK Biobank (N=197,340) revealed that women carrying testosterone-lowering rare variants in GPC2 were at higher risk of infertility (OR=2.63, P=1.25E-03). Taken together, our results suggest that while individual genes associated with hormone regulation may be relevant for fertility, there is limited genetic evidence for correlation between reproductive hormones and infertility at the population level. We provide the first comprehensive view of the genetic architecture of infertility across multiple diagnostic criteria in men and women, and characterise its relationship to other health conditions.

2.
Nat Commun ; 15(1): 2710, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548713

RESUMEN

Accurate placenta pathology assessment is essential for managing maternal and newborn health, but the placenta's heterogeneity and temporal variability pose challenges for histology analysis. To address this issue, we developed the 'Histology Analysis Pipeline.PY' (HAPPY), a deep learning hierarchical method for quantifying the variability of cells and micro-anatomical tissue structures across placenta histology whole slide images. HAPPY differs from patch-based features or segmentation approaches by following an interpretable biological hierarchy, representing cells and cellular communities within tissues at a single-cell resolution across whole slide images. We present a set of quantitative metrics from healthy term placentas as a baseline for future assessments of placenta health and we show how these metrics deviate in placentas with clinically significant placental infarction. HAPPY's cell and tissue predictions closely replicate those from independent clinical experts and placental biology literature.


Asunto(s)
Aprendizaje Profundo , Placenta , Recién Nacido , Humanos , Embarazo , Femenino , Placenta/patología
3.
Sci Transl Med ; 16(729): eadf4428, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38198570

RESUMEN

Population-based prospective studies, such as UK Biobank, are valuable for generating and testing hypotheses about the potential causes of human disease. We describe how UK Biobank's study design, data access policies, and approaches to statistical analysis can help to minimize error and improve the interpretability of research findings, with implications for other population-based prospective studies being established worldwide.


Asunto(s)
Bancos de Muestras Biológicas , Biobanco del Reino Unido , Humanos , Estudios Prospectivos , Proyectos de Investigación , Análisis de Datos
4.
BMC Genomics ; 24(1): 562, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736706

RESUMEN

BACKGROUND: Selective constraint, the depletion of variation due to negative selection, provides insights into the functional impact of variants and disease mechanisms. However, its characterization in mice, the most commonly used mammalian model, remains limited. This study aims to quantify mouse gene constraint using a new metric called the nonsynonymous observed expected ratio (NOER) and investigate its relationship with gene function. RESULTS: NOER was calculated using whole-genome sequencing data from wild mouse populations (Mus musculus sp and Mus spretus). Positive correlations were observed between mouse gene constraint and the number of associated knockout phenotypes, indicating stronger constraint on pleiotropic genes. Furthermore, mouse gene constraint showed a positive correlation with the number of pathogenic variant sites in their human orthologues, supporting the relevance of mouse models in studying human disease variants. CONCLUSIONS: NOER provides a resource for assessing the fitness consequences of genetic variants in mouse genes and understanding the relationship between gene constraint and function. The study's findings highlight the importance of pleiotropy in selective constraint and support the utility of mouse models in investigating human disease variants. Further research with larger sample sizes can refine constraint estimates in mice and enable more comprehensive comparisons of constraint between mouse and human orthologues.


Asunto(s)
Músculos , Mytilidae , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Tamaño de la Muestra , Secuenciación Completa del Genoma , Mamíferos
5.
medRxiv ; 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37645979

RESUMEN

Bleeding in early pregnancy and postpartum hemorrhage (PPH) bear substantial risks, with the former closely associated with pregnancy loss and the latter being the foremost cause of maternal death, underscoring the severity of these complications in maternal-fetal health. Here, we investigated the genetic variation underlying aspects of pregnancy-associated bleeding and identified five loci associated with PPH through a meta-analysis of 21,512 cases and 259,500 controls. Functional annotation analysis indicated candidate genes, HAND2, TBX3, and RAP2C/FRMD7, at three loci and showed that at each locus, associated variants were located within binding sites for progesterone receptors (PGR). Furthermore, there were strong genetic correlations with birth weight, gestational duration, and uterine fibroids. Early bleeding during pregnancy (28,898 cases and 302,894 controls) yielded no genome-wide association signals, but showed strong genetic correlation with a variety of human traits, indicative of polygenic and pleiotropic effects. Our results suggest that postpartum bleeding is related to myometrium dysregulation, whereas early bleeding is a complex trait related to underlying health and possibly socioeconomic status.

6.
Cell Genom ; 3(7): 100346, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37492099

RESUMEN

A primary obstacle in translating genetic associations with disease into therapeutic strategies is elucidating the cellular programs affected by genetic risk variants and effector genes. Here, we introduce LipocyteProfiler, a cardiometabolic-disease-oriented high-content image-based profiling tool that enables evaluation of thousands of morphological and cellular profiles that can be systematically linked to genes and genetic variants relevant to cardiometabolic disease. We show that LipocyteProfiler allows surveillance of diverse cellular programs by generating rich context- and process-specific cellular profiles across hepatocyte and adipocyte cell-state transitions. We use LipocyteProfiler to identify known and novel cellular mechanisms altered by polygenic risk of metabolic disease, including insulin resistance, fat distribution, and the polygenic contribution to lipodystrophy. LipocyteProfiler paves the way for large-scale forward and reverse deep phenotypic profiling in lipocytes and provides a framework for the unbiased identification of causal relationships between genetic variants and cellular programs relevant to human disease.

7.
medRxiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461573

RESUMEN

Exome-sequencing association studies have successfully linked rare protein-coding variation to risk of thousands of diseases. However, the relationship between rare deleterious compound heterozygous (CH) variation and their phenotypic impact has not been fully investigated. Here, we leverage advances in statistical phasing to accurately phase rare variants (MAF ~ 0.001%) in exome sequencing data from 175,587 UK Biobank (UKBB) participants, which we then systematically annotate to identify putatively deleterious CH coding variation. We show that 6.5% of individuals carry such damaging variants in the CH state, with 90% of variants occurring at MAF < 0.34%. Using a logistic mixed model framework, systematically accounting for relatedness, polygenic risk, nearby common variants, and rare variant burden, we investigate recessive effects in common complex diseases. We find six exome-wide significant (P<1.68×10-7) and 17 nominally significant (P<5.25×10-5) gene-trait associations. Among these, only four would have been identified without accounting for CH variation in the gene. We further incorporate age-at-diagnosis information from primary care electronic health records, to show that genetic phase influences lifetime risk of disease across 20 gene-trait combinations (FDR < 5%). Using a permutation approach, we find evidence for genetic phase contributing to disease susceptibility for a collection of gene-trait pairs, including FLG-asthma (P=0.00205) and USH2A-visual impairment (P=0.0084). Taken together, we demonstrate the utility of phasing large-scale genetic sequencing cohorts for robust identification of the phenome-wide consequences of compound heterozygosity.

8.
Nat Genet ; 55(6): 973-983, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37291194

RESUMEN

Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in >55,000 participants from three ancestry groups. We identified ten new loci (P < 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Insulina/genética , Estudio de Asociación del Genoma Completo , Resistencia a la Insulina/genética , Diabetes Mellitus Tipo 2/genética , Glucosa/metabolismo , Glucemia/genética
9.
Nat Metab ; 5(5): 861-879, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37253881

RESUMEN

Recent large-scale genomic association studies found evidence for a genetic link between increased risk of type 2 diabetes and decreased risk for adiposity-related traits, reminiscent of metabolically obese normal weight (MONW) association signatures. However, the target genes and cellular mechanisms driving such MONW associations remain to be identified. Here, we systematically identify the cellular programmes of one of the top-scoring MONW risk loci, the 2q24.3 risk locus, in subcutaneous adipocytes. We identify a causal genetic variant, rs6712203, an intronic single-nucleotide polymorphism in the COBLL1 gene, which changes the conserved transcription factor motif of POU domain, class 2, transcription factor 2, and leads to differential COBLL1 gene expression by altering the enhancer activity at the locus in subcutaneous adipocytes. We then establish the cellular programme under the genetic control of the 2q24.3 MONW risk locus and the effector gene COBLL1, which is characterized by impaired actin cytoskeleton remodelling in differentiating subcutaneous adipocytes and subsequent failure of these cells to accumulate lipids and develop into metabolically active and insulin-sensitive adipocytes. Finally, we show that perturbations of the effector gene Cobll1 in a mouse model result in organismal phenotypes matching the MONW association signature, including decreased subcutaneous body fat mass and body weight along with impaired glucose tolerance. Taken together, our results provide a mechanistic link between the genetic risk for insulin resistance and low adiposity, providing a potential therapeutic hypothesis and a framework for future identification of causal relationships between genome associations and cellular programmes in other disorders.


Asunto(s)
Actinas , Adipocitos , Obesidad Metabólica Benigna , Humanos , Adipocitos/metabolismo , Actinas/metabolismo , Obesidad Metabólica Benigna/genética , Factores de Transcripción/genética , Grasa Subcutánea/metabolismo , Células Cultivadas , Haplotipos , Ratones Noqueados , Masculino , Femenino , Ratones , Animales
10.
Proc Natl Acad Sci U S A ; 120(22): e2303480120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216519

RESUMEN

Metacaspases are part of an evolutionarily broad family of multifunctional cysteine proteases, involved in disease and normal development. As the structure-function relationship of metacaspases remains poorly understood, we solved the X-ray crystal structure of an Arabidopsis thaliana type II metacaspase (AtMCA-IIf) belonging to a particular subgroup not requiring calcium ions for activation. To study metacaspase activity in plants, we developed an in vitro chemical screen to identify small molecule metacaspase inhibitors and found several hits with a minimal thioxodihydropyrimidine-dione structure, of which some are specific AtMCA-IIf inhibitors. We provide mechanistic insight into the basis of inhibition by the TDP-containing compounds through molecular docking onto the AtMCA-IIf crystal structure. Finally, a TDP-containing compound (TDP6) effectively hampered lateral root emergence in vivo, probably through inhibition of metacaspases specifically expressed in the endodermal cells overlying developing lateral root primordia. In the future, the small compound inhibitors and crystal structure of AtMCA-IIf can be used to study metacaspases in other species, such as important human pathogens, including those causing neglected diseases.


Asunto(s)
Arabidopsis , Caspasas , Humanos , Caspasas/química , Simulación del Acoplamiento Molecular , Apoptosis , Proteínas de Unión al ADN
11.
J Med Chem ; 66(9): 6333-6353, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37094110

RESUMEN

Insecticide resistance jeopardizes the prevention of infectious diseases such as malaria and dengue fever by vector control of disease-transmitting mosquitoes. Effective new insecticidal compounds with minimal adverse effects on humans and the environment are therefore urgently needed. Here, we explore noncovalent inhibitors of the well-validated insecticidal target acetylcholinesterase (AChE) based on a 4-thiazolidinone scaffold. The 4-thiazolidinones inhibit AChE1 from the mosquitoes Anopheles gambiae and Aedes aegypti at low micromolar concentrations. Their selectivity depends primarily on the substitution pattern of the phenyl ring; halogen substituents have complex effects. The compounds also feature a pendant aliphatic amine that was important for activity; little variation of this group is tolerated. Molecular docking studies suggested that the tight selectivity profiles of these compounds are due to competition between two binding sites. Three 4-thiazolidinones tested for in vivo insecticidal activity had similar effects on disease-transmitting mosquitoes despite a 10-fold difference in their in vitro activity.


Asunto(s)
Aedes , Anopheles , Insecticidas , Animales , Humanos , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Mosquitos Vectores , Insecticidas/farmacología , Insecticidas/química , Relación Estructura-Actividad
12.
mBio ; 14(3): e0044923, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37120759

RESUMEN

Listeria monocytogenes is a facultative Gram-positive bacterium that causes listeriosis, a severe foodborne disease. We previously discovered that ring-fused 2-pyridone compounds can decrease virulence factor expression in Listeria by binding and inactivating the PrfA virulence activator. In this study, we tested PS900, a highly substituted 2-pyridone that was recently discovered to be bactericidal to other Gram-positive pathogenic bacteria, such as Staphylococcus aureus and Enterococcus faecalis. We show that PS900 can interact with PrfA and reduce the expression of virulence factors. Unlike previous ring-fused 2-pyridones shown to inactivate PrfA, PS900 had an additional antibacterial activity and was found to potentiate sensitivity toward cholic acid. Two PS900-tolerant mutants able to grow in the presence of PS900 carried mutations in the brtA gene, encoding the BrtA repressor. In wild-type (WT) bacteria, cholic acid binds and inactivates BrtA, thereby alleviating the expression of the multidrug transporter MdrT. Interestingly, we found that PS900 also binds to BrtA and that this interaction causes BrtA to dissociate from its binding site in front of the mdrT gene. In addition, we observed that PS900 potentiated the effect of different osmolytes. We suggest that the increased potency of cholic acid and osmolytes to kill bacteria in the presence of PS900 is due to the ability of the latter to inhibit general efflux, through a yet-unknown mechanism. Our data indicate that thiazolino 2-pyridones constitute an attractive scaffold when designing new types of antibacterial agents. IMPORTANCE Bacteria resistant to one or several antibiotics are a very large problem, threatening not only treatment of infections but also surgery and cancer treatments. Thus, new types of antibacterial drugs are desperately needed. In this work, we show that a new generation of substituted ring-fused 2-pyridones not only inhibit Listeria monocytogenes virulence gene expression, presumably by inactivating the PrfA virulence regulator, but also potentiate the bactericidal effects of cholic acid and different osmolytes. We identified a multidrug repressor as a second target of 2-pyridones. The repressor-2-pyridone interaction displaces the repressor from DNA, thus increasing the expression of a multidrug transporter. In addition, our data suggest that the new class of ring-fused 2-pyridones are efficient efflux inhibitors, possibly explaining why the simultaneous addition of 2-pyridones together with cholic acid or osmolytes is detrimental for the bacterium. This work proves conclusively that 2-pyridones constitute a promising scaffold to build on for future antibacterial drug design.


Asunto(s)
Listeria monocytogenes , Piridonas/farmacología , Piridonas/metabolismo , Factores de Virulencia/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ácido Cólico/metabolismo , Ácido Cólico/farmacología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Factores de Terminación de Péptidos/metabolismo , Regulación Bacteriana de la Expresión Génica
13.
Am J Hum Genet ; 110(2): 284-299, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36693378

RESUMEN

Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proinsulina , Humanos , Proinsulina/genética , Proinsulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Insulina/genética , Insulina/metabolismo , Glucosa , Factores de Transcripción/genética , Proteínas de Homeodominio/genética
14.
medRxiv ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36711652

RESUMEN

Obesity is a heritable disease, characterised by excess adiposity that is measured by body mass index (BMI). While over 1,000 genetic loci are associated with BMI, less is known about the genetic contribution to adiposity trajectories over adulthood. We derive adiposity-change phenotypes from 1.5 million primary-care health records in over 177,000 individuals in UK Biobank to study the genetic architecture of weight-change. Using multiple BMI measurements over time increases power to identify genetic factors affecting baseline BMI. In the largest reported genome-wide study of adiposity-change in adulthood, we identify novel associations with BMI-change at six independent loci, including rs429358 (a missense variant in APOE). The SNP-based heritability of BMI-change (1.98%) is 9-fold lower than that of BMI, and higher in women than in men. The modest genetic correlation between BMI-change and BMI (45.2%) indicates that genetic studies of longitudinal trajectories could uncover novel biology driving quantitative trait values in adulthood.

16.
EBioMedicine ; 79: 104020, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35490555

RESUMEN

BACKGROUND: The adipocyte-hypertrophy associated remodeling of fat cell function is considered causal for the development of metabolic disorders. A better understanding of transcriptome and fatty acid (FA) related alterations with adipocyte hypertrophy combined with less-invasive strategies for the detection of the latter can help to increase the prognostic and diagnostic value of adipocyte size and FA composition as markers for metabolic disease. METHODS: To clarify adipocyte-hypertrophy associated transcriptomic alterations, fat cell size was related to RNA-Seq data from white adipose tissue and size-separated adipocytes. The relationship between adipocyte size and adipose tissue FA composition as measured by GC-MS was investigated. MR spectroscopy (MRS) methods for clinical scanning were developed to characterize adipocyte size and FA composition in a fast and non-invasive manner. FINDINGS: With enlarged adipocyte size, substantial transcriptomic alterations of genes involved in mitochondrial function and FA metabolism were observed. Investigations of these two mechanisms revealed a reciprocal relationship between adipocyte size and estimated thermogenic adipocyte content as well as depot-specific correlations of adipocyte size and FA composition. MRS on a clinical scanner was suitable for the in-parallel assessment of adipose morphology and FA composition. INTERPRETATION: The current study provides a comprehensive overview of the adipocyte-hypertrophy associated transcriptomic and FA landscape in both subcutaneous and visceral adipose tissue. MRS represents a promising technique to translate the observed mechanistic, structural and functional changes in WAT with adipocyte hypertrophy into a clinical context for an improved phenotyping of WAT in the context of metabolic diseases. FUNDING: Competence network for obesity (FKZ 42201GI1128), ERC (No 677661, ProFatMRI; No 875488, FatVirtualBiopsy), Else Kröner-Fresenius-Foundation.


Asunto(s)
Ácidos Grasos , Transcriptoma , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Ácidos Grasos/metabolismo , Humanos , Hipertrofia/metabolismo , Hipertrofia/patología
17.
Chemistry ; 28(40): e202200678, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35420233

RESUMEN

Reactivators are vital for the treatment of organophosphorus nerve agent (OPNA) intoxication but new alternatives are needed due to their limited clinical applicability. The toxicity of OPNAs stems from covalent inhibition of the essential enzyme acetylcholinesterase (AChE), which reactivators relieve via a chemical reaction with the inactivated enzyme. Here, we present new strategies and tools for developing reactivators. We discover suitable inhibitor scaffolds by using an activity-independent competition assay to study non-covalent interactions with OPNA-AChEs and transform these inhibitors into broad-spectrum reactivators. Moreover, we identify determinants of reactivation efficiency by analysing reactivation and pre-reactivation kinetics together with structural data. Our results show that new OPNA reactivators can be discovered rationally by exploiting detailed knowledge of the reactivation mechanism of OPNA-inhibited AChE.


Asunto(s)
Reactivadores de la Colinesterasa , Agentes Nerviosos , Acetilcolinesterasa/química , Antídotos , Inhibidores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Compuestos Organofosforados , Oximas/química
18.
Biol Lett ; 18(3): 20210630, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35317627

RESUMEN

Understanding the genetic aetiology of loci associated with a disease is crucial for developing preventative measures and effective treatments. Mouse models are used extensively to understand human pathobiology and mechanistic functions of disease-associated loci. However, the utility of mouse models is limited in part by evolutionary divergence in transcription regulation for pathways of interest. Here, we summarize the alignment of genomic (exonic and multi-cell regulatory) annotations alongside Mendelian and complex disease-associated variant sites between humans and mice. Our results highlight the importance of understanding evolutionary divergence in transcription regulation when interpreting functional studies using mice as models for human disease variants.


Asunto(s)
Regulación de la Expresión Génica , Genoma , Animales , Humanos , Ratones
19.
PLoS Med ; 19(2): e1003679, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35104295

RESUMEN

BACKGROUND: Obesity is observationally associated with altered risk of many female reproductive conditions. These include polycystic ovary syndrome (PCOS), abnormal uterine bleeding, endometriosis, infertility, and pregnancy-related disorders. However, the roles and mechanisms of obesity in the aetiology of reproductive disorders remain unclear. Thus, we aimed to estimate observational and genetically predicted causal associations between obesity, metabolic hormones, and female reproductive disorders. METHODS AND FINDINGS: Logistic regression, generalised additive models, and Mendelian randomisation (MR) (2-sample, non-linear, and multivariable) were applied to obesity and reproductive disease data on up to 257,193 women of European ancestry in UK Biobank and publicly available genome-wide association studies (GWASs). Body mass index (BMI), waist-to-hip ratio (WHR), and WHR adjusted for BMI were observationally (odds ratios [ORs] = 1.02-1.87 per 1-SD increase in obesity trait) and genetically (ORs = 1.06-2.09) associated with uterine fibroids (UF), PCOS, heavy menstrual bleeding (HMB), and pre-eclampsia. Genetically predicted visceral adipose tissue (VAT) mass was associated with the development of HMB (OR [95% CI] per 1-kg increase in predicted VAT mass = 1.32 [1.06-1.64], P = 0.0130), PCOS (OR [95% CI] = 1.15 [1.08-1.23], P = 3.24 × 10-05), and pre-eclampsia (OR [95% CI] = 3.08 [1.98-4.79], P = 6.65 × 10-07). Increased waist circumference posed a higher genetic risk (ORs = 1.16-1.93) for the development of these disorders and UF than did increased hip circumference (ORs = 1.06-1.10). Leptin, fasting insulin, and insulin resistance each mediated between 20% and 50% of the total genetically predicted association of obesity with pre-eclampsia. Reproductive conditions clustered based on shared genetic components of their aetiological relationships with obesity. This study was limited in power by the low prevalence of female reproductive conditions among women in the UK Biobank, with little information on pre-diagnostic anthropometric traits, and by the susceptibility of MR estimates to genetic pleiotropy. CONCLUSIONS: We found that common indices of overall and central obesity were associated with increased risks of reproductive disorders to heterogenous extents in a systematic, large-scale genetics-based analysis of the aetiological relationships between obesity and female reproductive conditions. Our results suggest the utility of exploring the mechanisms mediating the causal associations of overweight and obesity with gynaecological health to identify targets for disease prevention and treatment.


Asunto(s)
Leiomioma/epidemiología , Obesidad/epidemiología , Síndrome del Ovario Poliquístico/epidemiología , Preeclampsia/epidemiología , Hemorragia Uterina/epidemiología , Adulto , Anciano , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Leiomioma/etiología , Leiomioma/genética , Masculino , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/genética , Síndrome del Ovario Poliquístico/etiología , Síndrome del Ovario Poliquístico/genética , Preeclampsia/etiología , Preeclampsia/genética , Embarazo , Medición de Riesgo , Reino Unido/epidemiología , Hemorragia Uterina/etiología , Hemorragia Uterina/genética
20.
Epigenetics Chromatin ; 15(1): 4, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35090532

RESUMEN

BACKGROUND: Topologically associating domains (TADs) are thought to act as functional units in the genome. TADs co-localise genes and their regulatory elements as well as forming the unit of genome switching between active and inactive compartments. This has led to the speculation that genes which are required for similar processes may fall within the same TADs, allowing them to share regulatory programs and efficiently switch between chromatin compartments. However, evidence to link genes within TADs to the same regulatory program is limited. RESULTS: We investigated the functional similarity of genes which fall within the same TAD. To do this we developed a TAD randomisation algorithm to generate sets of "random TADs" to act as null distributions. We found that while pairs of paralogous genes are enriched in TADs overall, they are largely depleted in TADs with CCCTC-binding factor (CTCF) ChIP-seq peaks at both boundaries. By assessing gene constraint as a proxy for functional importance we found that genes which singly occupy a TAD have greater functional importance than genes which share a TAD, and these genes are enriched for developmental processes. We found little evidence that pairs of genes in CTCF bound TADs are more likely to be co-expressed or share functional annotations than can be explained by their linear proximity alone. CONCLUSIONS: These results suggest that algorithmically defined TADs consist of two functionally different groups, those which are bound by CTCF and those which are not. We detected no association between genes sharing the same CTCF TADs and increased co-expression or functional similarity, other than that explained by linear genome proximity. We do, however, find that functionally important genes are more likely to fall within a TAD on their own suggesting that TADs play an important role in the insulation of these genes.


Asunto(s)
Cromatina , Genoma , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...